Task-Level Strategies for Human Sagittal-Plane Running Maneuvers Are Consistent with Robotic Control Policies
نویسندگان
چکیده
The strategies that humans use to control unsteady locomotion are not well understood. A "spring-mass" template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, "spring-mass" systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a "pogo stick" strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a "unicycle" strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.
منابع مشابه
Identifying Feedback Control Strategies of Running Cockroaches and Humans
In this dissertation, we model biological sensorimotor behaviors of two species, a cockroach following a wall and a human running on a split-belt treadmill, to elucidate the neural processing that underlie locomotor control in biological systems: (1) We model the horizontal musculoskeletal dynamics of antenna-based wall following for the American cockroach, Periplaneta americana, as a dynamic p...
متن کاملDesigning, Construction and Accreditation "Human motion analysis instrument based on joints angles in sagittal plane"
Tools and methods that could lead to the recognition and motion analysis variables are helpful in understanding the movements and movement Sciences and It will be a vital part of movement and sport sciences laboratories. "Human motion analysis instrument based on joints angles in sagittal plane" was designed to provide information about the motion analysis that offers to researchers, educators ...
متن کاملDesigning a Robust Control Scheme for Robotic Systems with an Adaptive Observer
This paper introduces a robust task-space control scheme for a robotic system with an adaptive observer. The proposed approach does not require the availability of the system states and an adaptive observer is developed to estimate the state variables. These estimated states are then used in the control scheme. First, the dynamic model of a robot is derived. Next, an observer-based robust contr...
متن کاملمحاسبه ضرائب مانور شناورها به کمک روش شناسایی سیستم مبتنی بر تست های مدل خودرانش
Ship maneuvering performance evaluation is essential for primary design stages. Ship maneuvering calculations, horizontal plane motion control and development of maneuvering simulators need a mathematical description of ship maneuvering. In the recent years, different mathematical models are suggested for maneuvering of displacement vessels that are capable of estimation of vessel maneuvers wit...
متن کاملControl of a Robotic Wheel-Chair Prototype for People with Walking Disabilities
In this paper we present a system that could be used to help people with walking disabilities. A system consists of a prototype mobile robot platform equipped with a control board and a remote computer system, running with image processing algorithms, was used to develop a system for physically disabled human to move freely in an environment. We used a camera to get visual information by a huma...
متن کامل